
Data Traffic Control

Laura Kinkead

May 31, 2021

CONTENTS:

1 What is it? 3

2 Main Features 5

3 Installation 7
3.1 Getting Started . 7
3.2 Supported File Formats . 13
3.3 API Reference . 14

Index 19

i

ii

Data Traffic Control

Whhrrrr. . . Voooooosh. . . That’s the sound of your data coming and going exactly where it belongs.

CONTENTS: 1

Data Traffic Control

2 CONTENTS:

CHAPTER

ONE

WHAT IS IT?

data traffic control is a python package that automates every-day interactions with your data files. Data files are the
building materials we work with every day, all day. Working with them should be effortless!

3

Data Traffic Control

4 Chapter 1. What is it?

CHAPTER

TWO

MAIN FEATURES

• Navigate your data directories with ease, without having to memorize long file paths.

• Load data files without having to think about it (or looking it up the syntax yet again).

• Be certain of how a datafile was generated, and rest easy knowing you could reproduce it.

5

Data Traffic Control

6 Chapter 2. Main Features

CHAPTER

THREE

INSTALLATION

>>> pip install datatc

3.1 Getting Started

3.1.1 Register a project

datatc will remember for you where the data for each of your projects is stored, so that you don’t have to. The first
time you use datatc with a project, register it with DataDirectory. You only have to do this once- datatc saves the
information in ~/.data_map.yaml so you never have to memorize that long file path again.

>>> DataDirectory.register_project('project_name', '/path/to/project/data/dir/')

Example:

>>> DataDirectory.register_project('mridle', '/home/user/data/mridle/data')

Once you’ve registered a project, you can establish a DataDirectory on the fly by referencing it’s name.

>>> dd = DataDirectory.load('mridle')

The DataDirectory object, dd, will be your gateway to all file discovery, load, and save operations.

3.1.2 Explore the data directory

DataDirectory makes it easier to interact with your project’s data directory. With ls(), you can print out the file
structure:

>>> dd.ls()
raw/

EntityViews/
7 mixed items

data_extracts/
2019-11-23_Extract_3days/

1 mixed items
2020-01-05_Extract_3days_withHistory_v2/

2 mixed items
(continues on next page)

7

Data Traffic Control

(continued from previous page)

2020-02-04_Extract_3months/
3 mixed items

db-connection.R
query.sql

You can also print the contents of a subdirectory by navigating to it via the [] operators:

>>> dd['data_extracts'].ls(full=True)
data_extracts/

2019-11-23_Extract_3days/
2019-11-23_Extract_3days.xlsx

2020-01-05_Extract_3days_withHistory_v2/
2020-01-05_Extract_3days_withHistory_v2.xlsx
2020-01-05_Extract_3days_withHistory_v2_sql.sql

2020-02-04_Extract_3months/
2020-02-04_Extract_3months.sql
2020-02-04_Extract_3months.xlsx
3_month_export.csv

3.1.3 Loading data files

To load a file, navigate the file system using [] operators, and then call .load().

>>> raw_df = dd['data_extracts']['2020-02-04_Extract_3months']['2020-02-04_Extract_
→˓3months.xlsx'].load()

Don’t worry about what format the file is in- datatc will intuit how to load the file. See Supported Formats.

Shortcuts for loading data files faster

latest

If you use timestamps to version your data files, you can load the latest file or subdirectory within a directory with
.latest():

>>> raw_df = dd['data_extracts'].latest()['2020-02-04_Extract_3months.xlsx'].load()

select

To help you navigate those long finicky file names, DataDirectory provides a .select('hint') method to search
for files matching a substring.

>>> raw_df = dd['data_extracts']['2020-02-04_Extract_3months'].select('xlsx').load()

Combing latest and select, the file load in the previous can be reduced to the following:

>>> raw_df = dd['data_extracts'].latest().select('xlsx').load()

8 Chapter 3. Installation

Data Traffic Control

Loading irregular data files

. . . my file needs special arguments to load

If your file needs special parameters to load it, specify them in load, and they will be passed on to the internal loading
function. For example, if your csv file is actually pipe separated and has a non-default encoding, you can specify so:

>>> raw_df = dd['queries']['batch_query.csv'].load(sep='|', encoding='utf-16')

. . . my file type isn’t recognized by datatc

If datatc doesn’t recognize the file type, you can give it a type hint of which loader to use. For example, datatc doesn’t
have a specific interface for reading tab separated files, but if you tell it to treat it as a csv and instruct it to use tab as
the separator, it will load it right up:

>>> raw_df = dd['queries']['batch_query.tsv'].load(data_interface_hint='csv', sep='\t')

. . . I want to load my file my own way

If you ever want to do your own load, and not use the build in .load(), you can also use dd[...]['filename'].path
to get the path to the file for use in a separate loading operation.

3.1.4 Saving data files

To save a file, navigate with dd to the position in the file system where you’d like to save your file using the [] operators,
and then call .save(data_object, file_name).

For example:

dd['processed_data'].save(processed_df, 'processed.csv')

3.1.5 Working with SelfAwareData

SelfAwareData helps you remember how your datasets were generated.

You have 2 options for turning your dataset into a SelfAwareData:

1. Load from a file:

>>> my_sad = SelfAwareData.load_from_file('~/path/to/data.csv')

When you establish a SelfAwareData from a file, it will track the file that the SelfAwareData originated from.

2. Create on the fly from a live data object:

>>> my_sad = SelfAwareData(raw_df)

Starting a SelfAwareData this way will not track how the data originated.

Your data is now accessible via my_sad.data.

3.1. Getting Started 9

Data Traffic Control

Transform

When you apply a transform to your dataset, use the built-in transform method to track the transform.

>>> new_sad = my_sad.transform(transform_func)

If you need to specify arguments to your transform_func, do so as keyword arguments in the transform function:

>>> new_sad = my_sad.transform(transform_func, num_bins=12)

Note: Note on Tracking Git Metadata: To ensure traceability, SelfAwareData checks that there are no uncommitted
changes in the repo before running the transform. If there are uncommitted changes, datatc raises a RuntimeError.
If you would like to override this check, specify enforce_clean_git = False in transform().

Note: If the transform_func you pass to transform() is written in a file in a git repo, then datatc will include
the git hash of the repo where transform_func is written. If the transform_func is not in a file (for example, is
written on the fly in a notebook or in an interactive session), the user may specify the module to get a git hash from via
get_git_hash_from=module.

SelfAwareData objects automatically track their own metadata

By using the SelfAwareData.transform method, metadata about the transformation is automatically tracked, in-
cluding:

• the timestamp of when the transformation was run

• the git hash of the repo where transform_func is located

• the code of the transform used to transform the data

• the arguments to the transform function

To access metadata, you can print the transform steps:

>>> new_sad.print_steps()
--
Step 0 2021-01-27 21:46 #f98fc21
--
def transform_step_1(input_df):

df = input_df.copy()
df['col_1'] = df['col_1'] * -1
return df

--
Step 1 2021-01-27 21:46 #f98fc21
--
def transform_step_2(input_df):

df = input_df.copy()
df['col_2'] = df['col_2']**2
return df

To access the data programatically, use SelfAwareData.get_info():

10 Chapter 3. Installation

Data Traffic Control

>>> new_sad.get_info()
[

{
'timestamp': '2021-01-27_21-46-52',

'tag': '',
'code': "def transform_step_1(input_df):\n df = input_df.copy()\n df['col_1

→˓'] = df['col_1'] * -1\n return df\n",
'kwargs': {},
'git_hash': 'f98fc21'

},
{

'timestamp': '2021-01-27_21-46-55',
'tag': '',
'code': "def transform_step_2(input_df):\n df = input_df.copy()\n df['col_2

→˓'] = df['col_2']**2\n return df\n",
'kwargs': {},
'git_hash': 'f98fc21'

}
]

Save

There are 2 ways to save SelfAwareData objects.

1. If you are using DataDirectory, then saving your SelfAwareData works the same as saving any other file
with DataDirectory.

>>> dd['directory'].save(sad, output_file_name)

2. You can also save SelfAwareData, independently, without using DataDirectory.

>>> sad.save(output_file_path)

Load

Loading SelfAwareData works the same as loading any other data file with DataDirectory.

>>> sad = dd['feature_sets']['my_feature_set.csv'].load()

This load returns you a SelfAwareData object. This object contains not only the data you transformed and saved, but
also the transformation function itself.

To access the data:

>>> sad.data

To view the code of the data’s transformation function:

>>> sad.print_steps()

To rerun the same transformation function on a new data object:

3.1. Getting Started 11

Data Traffic Control

>>> sad.rerun(new_df)

Loading SelfAwareData objects without DataDirectory

You can also load SelfAwareData objects without going through DataDirectory:

>>> sad = SelfAwareData.load(file_path)

However, SelfAwareData objects are saved to the file system as directories with long names, like
sad_dir__2021-01-01_12-00__transform_1. When you interact with SelfAwareData via DataDirectory, you
can reference them like normal files (transform_1.csv), however, referencing them outside of DataDirectory is
not as easy.

Loading SelfAwareData objects in dependency-incomplete environments

If the SelfAwareData object is moved to a different environment where the dependencies for the code transform are not
met, use

>>> sad = SelfAwareDataDirectory.load(load_function=False)

to avoid a ModuleNotFoundError.

SelfAwareData Example

Here’s a toy example of working with SelfAwareData:

from datatc import DataDirectory, SelfAwareData

dd = DataDirectory.load('datatc_demo')

raw_sad = SelfAwareData.load_from_file(dd['raw']['iris.csv'].path)

def petal_area(df):
df['petal_area'] = df['petal_length'] * df['petal_width']
return df

area_sad = raw_sad.transform(petal_area)

dd['processed'].save(area_sad, 'area.csv')

View your SelfAwareData tree with the datatc web app!

You can view the tree of how your SelfAwareData files are related in the datatc web app. To start the web app, run the
datatc_app command in your shell and provide the name of the project whose data directory you’d like to view.

>>> datatc_app <registered_project>

This project must have been previously registered to datatc with DataDirectory.register_project(). If you need
a reminder of what projects you’ve registered with datatc, run datatc_list.

12 Chapter 3. Installation

Data Traffic Control

Note: To use the web app, install datatc with the extra app dependencies: pip install datatc[app]. If you’re
using zsh, you’ll need to escape the square brackets with pip install datatc\[app\]

3.1.6 Working with File Types via MagicDataInterface

MagicDataInterface provides a one-stop shop for interacting with common file types. Just point
MagicDataInterface to a file path and call save() and load().

from datatc import MagicDataInterface

iris_df = MagicDataInterface.load('iris.csv')
config = MagicDataInterface.load('config/model_params.yaml')

MagicDataInterface.save(results, 'results/iris_results.pkl')

See Supported Formats for a list of data types that MagicDataInterface knows how to work with.

If you want to work with a file type that MagicDataInterface doesn’t know about yet, you can create a DataInterface
for it:

1. Create a DataInterface that subclasses from DataInterfaceBase, and implement the
_interface_specific_save and _interface_specific_load functions.

2. Register your new DataInterface with MagicDataInterface:

>>> MagicDataInterface.register_data_interface(MyNewDataInterface)

3.2 Supported File Formats

datatc supports reading and writing the following file formats.

Note: Most formats work out of the box, but a few require additional installations- these are noted with an asterisk and
explained below.

• CSV

• Dill

• Excel

• Parquet*

• PDF*

• Pickle

• Text

• YAML

3.2. Supported File Formats 13

Data Traffic Control

3.2.1 Formats that Require Additional Installation

Parquet

To work with Parquet files, you must also install either pyarrow or fastparquet.

PDF

To work with PDF files, you must also install the fitz package.

3.3 API Reference

3.3.1 DataDirectory

class datatc.data_directory.DataDirectory(path, contents=None,
magic_data_interface=<datatc.data_interface.MagicDataInterfaceBase
object>)

Manages saving, loading, and viewing data files within a specific data path.

latest()
Return the latest data file or directory, as determined alphabetically.

Return type Union[DataDirectory, DataFile]

classmethod list_projects()
List all data directories previously registered via register_project.

Return type None

classmethod load(hint)
Shortcut for load_project.

classmethod load_project(hint)
Create a DataDirectory from a project hint previously registered via register_project.

ls(full=False)
Print the contents of the data directory. Defaults to printing all subdirectories, but not all files.

Parameters full – Whether to print all files.

Return type None

mkdir(dir_name)
Create a new directory within the current directory. :type dir_name: str :param dir_name: Name for the
new directory

Returns: None

classmethod register_project(project_hint, project_path)
Register a hint for a project data directory so that it can be easily reloaded via load(hint).

Return type None

save(data, file_name, **kwargs)
Save a data object within the data directory.

Parameters

• data (Any) – data object to save.

14 Chapter 3. Installation

Data Traffic Control

• file_name (str) – file name for the saved object, including file extension. The file exten-
sion is used to determine the file type and method for saving the data.

• **kwargs – Remaining args are passed to the data interface save function.

Return type None

select(hint)
Return the DataDirectory from self.contents that matches the hint. If more than one file matches the hint,
then select the one that file whose type matches the hint exactly. Otherwise raise an error and display all
matches.

Parameters hint (str) – string to use to search for a file within the directory.

Raises

• FileNotFoundError – if no file can be found in the data directory that matches the hint.

• ValueError – if more than one file is found in the data directory that matches the hint.

Return type Union[DataDirectory, DataFile]

class datatc.data_directory.SelfAwareDataDirectory(path, contents=None)
Subclass of DataDirectory that manages interacting with the file expression of SelfAwareData.

get_info()
Get metadata about the SelfAwareData object.

Return type Dict[str, str]

load(data_interface_hint=None, load_function=True, **kwargs)
Load a saved data transformer- the data and the function that generated it.

Parameters

• data_interface_hint (Optional[str]) – file extension indicating the data interface to
use to load the file.

• load_function (bool) – Whether to load the transformation function of the SelfAware-
Data object. Specify False if the current environment does not support the dependencies
of the transformation function.

• **kwargs – Remaining args are passed to the data interface save function.

Return type SelfAwareData

3.3.2 DataFile

class datatc.data_directory.DataFile(path, contents=None)

load(data_interface_hint=None, **kwargs)
Load a data file.

Parameters

• data_interface_hint – file extension indicating the data interface to use to load the file.

• **kwargs – Remaining args are passed to the data interface save function.

Return type Any

3.3. API Reference 15

Data Traffic Control

3.3.3 SelfAwareData

class datatc.self_aware_data.SelfAwareData(data, metadata=None)
A wrapper around a dataset that also contains the code that generated the data. SelfAwareData can re-run it’s
transformation steps on a new dataset.

classmethod load(file_path, data_interface_hint=None, **kwargs)
Load a SelfAwareData object.

Parameters

• file_path (str) – Path to the SAD to load.

• data_interface_hint – Hint for which kind of data interface to use to load the data (file
extension).

Example Usage:

>>> sad = SelfAwareData.load('~/project/data/sad_dir__2021-01-01_12-00__
→˓standard_features.csv')

Return type SelfAwareData

classmethod load_from_file(file_path, **kwargs)
Create a SelfAwareData object with a initial SourceFileTransformStep

Parameters file_path (str) – path to a standard file (not already a SelfAwareData)

Returns: SelfAwareData with a TransformSequence containing a SourceFileTransformStep pointing to
file_path

Return type SelfAwareData

print_steps()
Print the code of the transformation steps that generated the data.

rerun(data)
Rerun the same transformation function that generated this SelfAwareData on a new data object.

Parameters data –

Returns:

Return type Any

save(file_path, **kwargs)
Save a SelfAwareData object.

Parameters file_path (str) – Path for where to save the SAD, including file extension.

Returns: Path to the saved SAD

Return type Path

transform(transformer_func, tag='', enforce_clean_git=True, get_git_hash_from=None, **kwargs)
Transform a SelfAwareData, generating a new SelfAwareData object.

Parameters

• transformer_func (Callable) – Transform function to apply to data.

• tag (str) – (optional) short description of the transform for reference

16 Chapter 3. Installation

Data Traffic Control

• enforce_clean_git – Whether to only allow the save to proceed if the working state of
the git directory is clean.

• get_git_hash_from (Optional[Any]) – Locally installed module from which to get git
information. Use this arg if transform_func is defined outside of a module tracked by git.

Returns: new transform directory name, for adding to contents dict.

Return type SelfAwareData

3.3.4 MagicDataInterface

datatc.data_interface.MagicDataInterface

3.3. API Reference 17

Data Traffic Control

18 Chapter 3. Installation

INDEX

D
DataDirectory (class in datatc.data_directory), 14
DataFile (class in datatc.data_directory), 15

G
get_info() (datatc.data_directory.SelfAwareDataDirectory

method), 15

L
latest() (datatc.data_directory.DataDirectory

method), 14
list_projects() (datatc.data_directory.DataDirectory

class method), 14
load() (datatc.data_directory.DataDirectory class

method), 14
load() (datatc.data_directory.DataFile method), 15
load() (datatc.data_directory.SelfAwareDataDirectory

method), 15
load() (datatc.self_aware_data.SelfAwareData class

method), 16
load_from_file() (datatc.self_aware_data.SelfAwareData

class method), 16
load_project() (datatc.data_directory.DataDirectory

class method), 14
ls() (datatc.data_directory.DataDirectory method), 14

M
MagicDataInterface (in module

datatc.data_interface), 17
mkdir() (datatc.data_directory.DataDirectory method),

14

P
print_steps() (datatc.self_aware_data.SelfAwareData

method), 16

R
register_project() (datatc.data_directory.DataDirectory

class method), 14
rerun() (datatc.self_aware_data.SelfAwareData

method), 16

S
save() (datatc.data_directory.DataDirectory method),

14
save() (datatc.self_aware_data.SelfAwareData

method), 16
select() (datatc.data_directory.DataDirectory

method), 15
SelfAwareData (class in datatc.self_aware_data), 16
SelfAwareDataDirectory (class in

datatc.data_directory), 15

T
transform() (datatc.self_aware_data.SelfAwareData

method), 16

19

	What is it?
	Main Features
	Installation
	Getting Started
	Register a project
	Explore the data directory
	Loading data files
	Shortcuts for loading data files faster
	latest
	select

	Loading irregular data files
	… my file needs special arguments to load
	… my file type isn’t recognized by datatc
	… I want to load my file my own way

	Saving data files
	Working with SelfAwareData
	Transform
	SelfAwareData objects automatically track their own metadata

	Save
	Load
	Loading SelfAwareData objects without DataDirectory
	Loading SelfAwareData objects in dependency-incomplete environments

	SelfAwareData Example
	View your SelfAwareData tree with the datatc web app!

	Working with File Types via MagicDataInterface

	Supported File Formats
	Formats that Require Additional Installation
	Parquet
	PDF

	API Reference
	DataDirectory
	DataFile
	SelfAwareData
	MagicDataInterface

	Index

